GOLDEN, Colo. — The U.S. Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL) has announced the demonstration of a 45.7 percent conversion efficiency for a four-junction solar cell at 234 suns concentration. NREL said this is one of the highest photovoltaic research cell efficiencies achieved across all types of solar cells.

The new solar cell, which is designed for operation in a concentrator photovoltaic (CPV) system where it can receive more than 1,000 suns of concentrated sunlight, greatly improves earlier designs by incorporating an additional high quality absorber layer to achieve an ultra-high efficiency.

Multijunction solar cells harvest sunlight by dividing the solar spectrum into portions that are absorbed by a material with a bandgap tuned to a specific wavelength range. Combining materials with optimal bandgaps is critical for high efficiency. The challenge is to maintain the high quality of the materials while integrating them into a complex cell capable of efficient photoconversion.

“The distinction of this multijunction device is the very high quality of the lattice-mismatched subcells,” said Ryan France, NREL scientist and designer of the solar cell. “Lattice-mismatched materials require the introduction of defects, called dislocations, into the device, which can drastically hinder device performance. NREL has learned to control and confine these dislocations to inactive regions of the device, allowing even highly mismatched material to be used in a multijunction cell.”

The cell’s peak efficiency of 45.7 ± 2.3 percent was measured under the AM1.5 direct spectrum at 234 suns concentration, but the device performs nearly as well at even higher concentrations, having 45.2 percent efficiency at 700 suns concentration.

The cell measurements lab at NREL validated the efficiency. Notably, the measurements at high concentration were taken with a new flash simulator — a Tunable High Intensity Pulsed Solar Simulator (T-HIPSS) — that more accurately controls the spectrum of the concentrated light. This tool ensures that each junction of the device receives an amount of light representative of the solar spectrum, and greatly reduces the error of measurement. The cell is being sent to an external accredited laboratory for further testing and confirmation.

This work is supported by DOE’s SunShot Initiative, which is a national effort to make solar energy cost-competitive with traditional energy sources by the end of the decade. Through SunShot, DOE supports private companies, universities, and national laboratories working to drive down the cost of solar electricity to $0.06 per kilowatt-hour. For more information, visit http://energy.gov/sunshot.

Publication date: 1/12/2015

Want more HVAC industry news and information? Join The NEWS on Facebook, Twitter, and LinkedIn today!